
line in Fig. 3. In particular, this makes it possible to describe by means of function • 
a change for one reason or another of material element resistance to failure due to the 
limitedness of average stress. 

The presence of function X2 in (5.3) makes it possible by using it to describe the ef- 
fect of shear strains on the change in volume and average stress. Let deformation proceed 
with o = ~ = 0. In this case, according to (5.2) shear strains lead to a change in volume 

2 ( l +  X2) , , 
by the equation e- X~--?~ea~" Let deformation occur without a change in volume. Then 

i 

shear strains lead to a change in y by the equation d_/? _----2(I + %2)?~,~s =~ and consequently dt 
to a corresponding change in average stress. Presence of function X3 in (5.3) makes it 
possible by using it to describe the change for one reason or another of elastic shear modu- 
lus ~. 

The examples provided demonstrate that there are very extensive possibilities for de- 
scribing different phenomena by introducing nondissipative inelastic strains into deforma- 
tion equations for a material element. 

I, 

2. 
3. 
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DIRECT METHOD OF DETERMINING THE DYNAMICAL RESPONSE IN INTERACTIONS 

OF CONSTRUCTION ELEMENTS WITH CONCENTRATED MASSES AND RIGIDITIES 

A. V. Agafonov UDC 534.1 

In many cases of calculation of construction elements (rods, plates, etc.) subjected 
to concentrated interactions it is sufficient to know only the strain-stress state of the 
considered element directly at the points of load and the element on the whole (or the whole 
construction) is of interest only in the sense of its integral response to the interaction. 

If the concentrated interaction is given then finding this integral response is usually 
not difficult. In the same cases when the interaction depends on the motion of the construc- 
tion element itself, determining the integral response necessitates coupling the variation 
of the load to the motion of the construction. 

To solve such problems one uses the basic method of dynamic susceptibilities [i, 2]. 
According to this method the solution is constructed in two stages [i]: first, one finds 
separately the dynamic susceptibilities of the element and the mass (rigidity) acting on 
it under action of a suddenly applied concentrated force; next, one seeks the response to 
the interaction of the element with the mass (rigidity) from the integrodifferential equa- 
tion expressing the condition of equality of the displacements of the mass and the element 
at the point of interaction. 

At the same time there exists a possibility of developing a method which permits one 
to determine parameters of interest at the point of interaction bypassing the preliminary 
determination of the dynamic susceptibilities and shortening the process of solving the 
problem. Such a method can be proposed on the basis of integral transforms and the for- 
malism of 6-functions. 
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We will discuss the general scheme of the proposed method on the example of a one-di- 
mensional problem. Let the behavior of a certain system in presence of concentrated masses 
or rigidities be described by the equation 

L~t (w) + L~ (w) ~ (x) = P (x, t), (1)  

where w is the unknown function (displacement); Lxt~ is the linear operator describing 
the behavior of the system; Lt1(,..) is the linear operator describing the interaction of 
the system with a concentrated mass (rigidity); P(x, t) is the external load; x is the space 
coordinate; t is time. 

Further, let the external load and the boundary conditions be such that it is possible 
to apply the Laplace transform in time and some integral transform (Fourier, Hankel, etc.) 
in the coordinate. Then applying integral transforms we have in the image plane 

Lo(p, V)Wpv + Ll(v)wvlx=0 = PI(P, v). (2)  

Here Wpv i s  t h e  image of  w; L0(p,  v) i s  a po lynomia l  de t e rmined  by t he  o p e r a t o r  Lx t~  L l ( v )  
i s  a po lynomia l  de t e rmined  by t h e  o p e r a t o r  L t l ;  P I (P ,  v) i s  a f u n c t i o n  de t e rmined  by t he  
load and t h e  boundary and i n i t i a l  c o n d i t i o n s ,  v i s  t he  pa rame te r  of  t h e  Lap lace  t r a n s f o r m ;  
p i s  t h e  pa rame te r  of  t he  t r a n s f o r m  of  the  c o o r d i n a t e .  

From t h e  e q u a l i t y  (2)  f o r  Wpv we o b t a i n  

PI(p,~) [ 1 
Wpv = LO (p,v) 51 (V) W v x=o LO~'V)" (3) 

As we are interested only in Wlx=0, i t  is necessary to know the inverse transform of 
the expressions PI(P, v)/L0(p, v) and i/L0(p, v) not for a l l  values of x, but for x = O, 
thus simplifying the solution. Let ~(v) be the inverse of the expression PI(P, v)/L0(P, v), 
and ~(v) of the expression i/L0(p, ~) for x = 0. Then from (2) it follows that 

w~l==o = ~(v)/[l -5 Ll(~)r (4)  

The i n v e r s i o n  o f  t he  image (4)  can be r e a l i z e d  e i t h e r  by means of  t a b l e s  o f  o r i g i n a l s  and 
t r a n s f o r m s ,  or  by means of  numer i ca l  methods of  i n v e r s i o n  of  Lap lace  t r a n s f o r m s .  

We n o t e  t h a t  t h e  proposed  method c o n t a i n s  e l emen t s  of  t h e  method of  dynamical  s u s c e p t i -  
b i l i t i e s ,  but the transition to the final expression in the image plane permits one to short- 
en the process of obtaining the solution. 

Now we consider examples of application of the method to solution of concrete problems. 

i. Impact of a Mass on a Half-lnfinite String 

Let the half-infinite string, whose one end is fastened, be struck at distance s from 
this end by a mass M 0 and velocity v 0. In dimensionless coordinates 

= x/ l ,  ~ = V ~ / m .  (t/z) ( 5 )  

t h e  motion o f  t he  system s t r i n g - m a s s  i s  d e s c r i b e d  ( u n t i l  t h e  mass s e p a r a t e s )  by the  f o l l o w -  
ing b o u n d a r y - v a l u e  problem 

8 ~ - -  ~ - -  M 8z 2 (~ - -  i )  == 0; ( 6 )  0~ 2 O~ ~ 

0w I0 for ~ 1 ,  
for ~ = 0 w = 0 ,  y ~ =  vlfor t = i ;  (7)  

% 

for ~ = 0  w = 0 ,  for ~ =  co w = 0 .  (8)  

Here M = M0/ms ; v = v 0 / / T - ~ ;  6 ( . . . ) 6  i s  t h e  5 - f u n c t i o n ;  m i s  t he  l i n e a r  mass of  t he  s t r i n g ;  
T i s  t h e  t e n s i o n  of  t h e  s t r i n g ;  w i s  t he  d e f l e c t i o n .  

Applying to  (6)  t he  Lap lace  t r a n s f o r m  in ~ and t he  s i n e  F o u r i e r  t r a n s f o r m  in ~ we ob- 
t a i n  t h e  e q u a t i o n  in  t he  image p l ane  

(9) 

800 



~sJ J 

I Fig. 1 

0 2 4 

where Wpv is the Laplace and Fourier image of deflection (w v is the Laplace image); p is 
the parameter of the Fourier transform; v is the parameter of the Laplace transform. 

Solving (9) with respect to Wpv and inverting it by Fourier, we have 

my = M [ v l -  v~wv ]~=1] 2 ~ sin p. sin p~ dp .  
~+v2 (i0) 

0 

For ~ = i (the point of impact) the integral entering (i0) is equal [3] 
Oo 

I = [ sins p 

0 

Taking in to  account  t h i s  e q u a l i t y  we ge t  from (10) 

M . t l - - e  - 2 v  
w~ I~=1 = ~-  w-7- M e_2V ) ( 11 ) 

l + y ~ ( t - -  

Expanding the  f r a c t i o n  on the  r i g h t - h a n d  s i d e  of (11) in s e r i e s  in powers of  e -2v we f i n d  

~ I  l t e - I V  / ~ - 'e  / 
w~ [ ~=~ = 7 v l  M M - - - - ~ -  " 

,[i+~,] l+~v,=0[i+T, ~ 

The factors e -2nv, as usual, take into account successive reflections of waves from the 
fastening and the mass. 

Inverting the last expression using tables of transforms and originals (see, e.g., [4]) 
we obtain for the deflection at the point of impact (for ~ < 6) 

M (12) 

[~]~e ~ " - ~ )  } _ ~i % (~ -- 4) . . . .  

The resulting solution is valid until the moment of separation of the mass from the 
string. Since this separation occurs when during the reverse motion the velocity of the 
string at point ~ = 1 attains its maximal value, the moment of separation can be determined 
from the equation d2w/d~ 21E=l = 0. 

The plots of the variation in time of the dimensionless deflection w' = 2w/(Mvs for 
various values of M are given in Fig. 1 where curves 1-3 are for M = 4, 8, 16; and curves 
1'-3' are for an infinite string. 

2. Impact of a Mass on a Beam of Finite Length 

Let the beam of length 2s be freely supported and be struck in the middle by a mass M 0 
with velocity v 0. Then in dimensionless coordinates 

V-5" / l: ~ = x/ l ,  "~ = - ~  (13) 
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the motion of the beam with the mass after impact is described by the following boundary- 
value problem 

2 

a"~a-- z + a--- ~%' + M a ~  5 (~ -- t) = O, 
~2 ~v 

for ~ = 0 ;  2 w = ~ = O ,  

aw j O for ~ =/= 1, 
for "c=O w = O ,  ~ - = [ ~ , l  for ~ = 1 .  

(14) 

In (13), (14) M = M0/ms v = v0//~; m is the linear mass of the beam and D its bending 
rigidity. 

To construct the solution we use the Laplace transform in T and a finite sine Fourier 
transform in ~. As the solution should be symmetric with respect to $ = i the sine func- 
tions with an odd number of argument only will occur in the solution. Proceeding in this 

Z 

manner for the transform wv(ss~-1) = wv sin .(2k-1) u~d~ we obtain w~,(2k-1) --5-- ~ +v +(--l)k, IX 

.l)h--1 7].:f ( y ~ -  'Y 2 Y.)%~ [~:1)  
o (_ Inverting the last expres- 2~I'v2wvl~=l=:(--l)k-l~/~ul, and finally Wv(2k-1)~ (2k__t) l~a+vs  

sion by the Fourier transform and solving the resulting expression for wvl~= ~ we get 

wv I~=~ ----- = (2k -- t) r 4- (2]/~'/n) ~ ( 15 ) 

~=~ (2~ - i )  ~ + (2 V~,/.~) ~ 

The sum appearing in (15)is evaluated [3] 

h=~mk--~)~+(2-VT/~)" 2~,V;, [ r162  - ~ r 1 7 6  

Due to the complexity of the expression for S the image (15) can be inverted only numer- 
ically. At the same time the structure of the expression for S allows construction of an 
asymptotic analytical solution, valid for a_!imited time interval. Expanding (in analogy t__oo 

the string) S in series in powers of e -k~2V and retaining the terms with the factor e -2~2~) 
inclusive; we find 

S ~ 1 t [ t _ e _ V ~ ( s i n  ] / ~  + cos ] / ~ ) 1  2V~,~/~ 
(the terms with the factor e -2/~v cancel). 

Substituting the last expression into (15) and again expanding the right-hand side in 

series in powers of e -k/T$~ (up to e -2/~v) we get 

Mvl 1 
Wv 1~=1 = 2 l /2  M '~ 1/~' {'] 

I +~V~ ~ 

M ~ + ~ - ~  

~-r [si.V~+ ~osV~l- 
M ~ - ~ V ~  (16) 

e-2V~ [t  + sin (2 ]/'2"v)l}- 

t 

To invert (16)we use the operation of convolution and tabulated formulas [4] 

e -V~  :_~ t exp(__.a~ 

e - ~ c o s ~ z _ ~  1 
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e - d ~  sm-t/~q-$" . 

and the relationship following from the Efros theorem [2, 5] 

oo 

V v  @ exp / (1:) d'c, 
0 

where F(v) ~ f(x). 

Inverting in (16) the rational-fraction factors with the aid of the last relationship 

and the factors with e -J~-~, etc., with the aid of the table relations given above and apply- 
ing the convolution, we get for wl$= I 

Mvl w I~=1 = ~ [wl + w.2 + w3 + ~v~]. 
z V z  

(17) 

Here 

,g 

~ S e -  dz (I)  ('~) = 2 z 2 

0 

z ( 7  M [1 COl; wl -~ ~ - -  2 ]/----~ - -  qh 

T 

0 
-r 

2 V 2  
w a -  ~-  ~ r  

0 

�9 �9 

W4 ---- ~ j q)2 ('I: Z) ~ sin dz; 
0 

2 l / -~ - -  2 ~ ~ (~); ~.~ (~/~ ~ 

i s  t h e  p r o b a b i l i t y  i n t e g r a l .  

The first term in (17) represents the deflection of an infinite beam upon impact of a 
mass, and the remaining terms account for the influence of the support on the deflection 
of the beam. As was shown by numerical calculation the main contribution to the total de- 
flection besides the one form w I is due to the component w 2. The component w4, containing 
under integral a fast-oscillating for z + 0 function sin (4/z), and the component w 3 con- 

" ~ " -2/Z taining under integral a fast-decaying for z 0 functlon e , do not together exceed 
10% of the component w 2. The rejected components (corresponding to k > 2 in the expansion 

in e -k/2V) will contain integrals of still faster oscillating functions of the type sin (6/ 
z) and faster decaying functions of the type e -4/z, etc. Therefore, one can assert that 
the contribution of the rejected terms will be yet smaller than the contribution of w 3 and 
w 4 and the proposed asymptotic solution can be used at least for T ~ 6. 

The plots of the variation of the dimensionless deflection w l' = 2/2w/Mvs for various 
values of M are shown in Fig. 2, where curves 1-3 show the deflection for M = 2, 4, 6; 
curves 1'-3' show the same for an infinite beam. 

3. Action of a Concentrated Force on an Infinite String 

Fastened to a Membrane. 

Let us consider a string with the transverse cross-sectional area F, under tension T, 
fastened to a membrane of thickness h under tension T I. The string is acted upon by a con- 
centrated force P0f(t). The material of the string and membrane is assumed to be the same 
for simplicity, and the tensions such that the stresses in the string and the membrane are 

x g VT1/Pht the mo- identical, i.e., T1/h = T/F. In dimensionless coordinates ~ = ~ ,  ~ = ~ ,  T h 

tion of suc]h a system is described by the equation (the axis ~ is directed along the string) 
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Po T F 
a ~  a ~  ~  + a ~ [ a ~  ~  ~(~) + ( ~ ) ~ ( D ~ ( ~ ) = o , ~ =  = o~ ~ a~ ~ a~ ~ L a~ ~ o~ ~ ~ ! ~ -~. (18)  

The initial and boundary conditions (for E = _+~, q = +_~) are zero. 

Applying to (18) the double Fourier transform in ~ and q and the Laplace transform in 

i a2 I .Po �9 , we obtain for the image Wpq v the equality (p~ +q~ + vz) w~qv +~-;~ (P~ + v~)wpvln=o = ~-f-~v 
" I 

[fv is the image of f(r)], from which we get u;p~=~-~.~ %--;-~-/v--a~(p~+v2) mpvIn=o p2 ~- q2 q_ v2" 

Inverting this last expression with respect to q using the known value of the integral [3] 

= - ~ -  

and solving the resulting equality for WpvIn--0 we have 
=P_z0 i l~, 

(19) 

To invert the image (19) we use the relationship following from the Efros theorem 

( VTi-?) F .~ ~ J0 (p v%-~-- ~0 ] (~) ~, 
V ~  + P~ o 

where  F ( v )  § f ( ~ ) ;  J 0 ( . . - )  i s  t h e  B e s s e l  f u n c t i o n  o f  t h e  f i r s t  k i n d  o f  i n d e x  0. By i n v e r t -  
ing  (19)  by F o u r i e r  and L a p l a c e  t r a n s f o r m s  u s i n g  t h e  l a s t  r e l a t i o n s h i p ,  we f i n d  f o r  f v  -- 1 
( f ( ' c )  = d ( ' r ) )  

P h I (' - ~z  (, . 
~(~ ~)l~=o=:~-~Je J:o/P V~-----~)~~ �9 

0 o 

Since [3, 6] 

0 0 , z 2 > ~ - -  ~ ,  

then 

poh i a"' Po h i ~ e a w (L "0 I~=o = - V  ~" j e d~. = dq> 
0 0 
(z = V ~- ~"y, y = sin ~). 

The plots of variation in time of the dimensionless deflection u/--~w(~, ~}In=0 for 

different values of ~ and a 2 and are shown in Fi~. 3, where curves 1~-3 t are for ~ -- O, 2, 
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4; and curves 1-4 for a 2 = 4, 2, i, 0.5. It is apparent that for fixed value of the ratio 
T/h with decreasing parameter a 2 the drop of deflection in time becomes steeper, while for 
a 2 + ~ the character of the time variation of the deflection approaches the variation of 
deflection for an isolated string. 
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